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Abstract

J

This paper is concerned with the effect of free-stream turbulence on

the pretransitional flat-plate boundary layer. It is assumed that

either the turbulence Reynolds number or the downstream distance (or

both) is small enough so that the flow can be linearized. The

dominant disturbances in the boundary layer, which are of the

Klebanoff type, are governed by the linearized unsteady boundary-

region equations, i.e., the Navier Stokes equations with the

streamwise derivatives neglected in the viscous and pressure-gradient

terms. The turbulence is represented as a superposition of vortical

free-stream Fourier modes, and the corresponding individual Fourier

component solutions to the boundary-region equations are obtained

numerically. The results are then superposed to compute the root mean

square of the fluctuating streamwise velocity in the boundary layer

produced by the actual free-stream turbulence. The calculated

boundary-layer disturbances are in good quantitative agreement with

the experimentally observed Klebanoff modes when strong low-frequency

anisotropic effects are included in the free-stream turbulence

spectrum. We discuss some additional effects that may need to be

accounted for in order to obtain a complete description of the

Klebanoff modes.



1. Introduction

This paper is concerned with the effects of vortical free-stream

disturbances on transition to turbulence in flat-plate boundary

layers. Weak free-stream turbulence in an otherwise uniform stream is

probably the most important example of this type of disturbance, and

Dryden (1936) and Taylor (1939) were the first to study its effects on

the flat-plate boundary layer. They showed that the resulting

streamwise velocity fluctuations were of very low frequency and

reached amplitudes that were several times ]arger than those in the

free-stream.

However, most of the early experiments were conducted at very low

free-stream turbulence levels in order to confirm the existence of TS

waves, and the Dryden-Taylor observations did not receive much

attention until Klebanoff carried out his i_71 experiments--which is

unfortunate since the free-stream turbulence level is usually quite

high in both technological and naturally occurring flows. In addition

to reproducing the earlier findings, Klebancff (1971) demonstrated

that the disturbances grew more or less linearly with the boundary-

layer thickness and that they are quite narrow in spanwise extent.

Klebanoff (1971) referred to these disturbances as breathing modes,

because, as noted earlier by Taylor (1939), they appeared to

correspond to a thickening and thinning of the boundary layer.

However, Kendall (1991) renamed them Klebancff modes, and that name

seems to have taken hold even though they are not modes in the strict
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mathematical sense (i.e., they are not eigen-solutions of an

appropriate differential equation).

More recent experimental studies of this phenomena were carried out by

Arnal and Juillen (1978), Kosorygin et al. (1982), Kendall (1985,

1991), Suder, O'Brien, and Reshotko (1988), Blair (1992), Roach and

Brierley (1992), Westin et al. (1994), and Watmuff (1997). The most

recent of these acknowledge the importance of carefully controlling

and documenting the free-stream disturbance environment, but, as will

be shown below, much remains to be done in this regard. Westin et al.

(1994) collected results from a number of these experiments and showed

that the root mean square (rms) of the streamwise velocity fluctuation

initially grows like the square root of the distance from the leading

edge of the plate, as observed by Klebanoff, but the actual growth

rates differ from experiment to experiment even when the amplitudes

are normalized by the free-stream turbulence level. Moreover, at

least some of the data exhibits growth rates that decrease with

increasing downstream distance, and in some cases there is a sudden

increase in amplitude, presumably signaling the onset of transition.

There are many theoretical and numerical studies of the effect of

small free-stream disturbances on flat-plate boundary layers, but only

a few of these directly relate to the generation and growth of

Klebanoff modes by free-stream turbulence.
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Motivated by the experimental findings of Bradshaw (1965), who

suggested that the observed spanwise variations in shear stress on his

plate could be traced to nonuniformities prc_duced by the screens in

the settling chamber, Crow (1966) carried out a linear analysis of the

boundary-layer flow due to a small spanwise distortion of an otherwise

uniform free-stream velocity. Goldstein, Leib and Cowley, (1992) and

Goldstein and Leib (1993)considered the nonlinear boundary-layer flow

due, respectively, to steady normal and streamwise vorticity

distortions to an otherwise uniform upstream flow.

Bertolotti (1997) used the parabolized stability equations to

numerically compute the disturbance velocity due to steady and low-

frequency, single-Fourier-component, free-stream modes and compared

the results with the experimental data of Westin et al. (1994) and

some recent unpublished data of Kendall. However, he was only able to

obtain agreement with experiment by representing the free-stream

turbulence by a single Fourier mode whose amplitude was chosen to fit

the experimental data.

The actual free-stream turbulence is, of course, broadband and is

therefore best represented as a superposition of Fourier modes. This

superposition can only be carried out within the context of a linear

analysis, which provides considerable motivation for extending the

range of application of the linear theory a_ much as possible--

especially since the only alternative appea_s to be the use of a full

numerical simulation.
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Scaling of the governing equations shows (Goldstein et al., 1992;

Goldstein and Leib, 1993; and Goldstein and Wundrow, 1997) that

nonlinear effects become important when the scaled streamwise distance

_x*/L* is order-one, where epsilon is a measure of the free-stream

turbulence level and L" is its characteristic length scale.

Fluctuating streamwise velocity measurements were taken by Westin et

al. (1994) for two free-stream turbulence levels at distances from the

leading edge ranging from I00 mmto 1 m. At their higher turbulence

level, _ = .015. Westin et al. (1994) estimate the transverse integral

scale of the free-stream turbulence in their experiment to be between

7 and i0 mm (see page 203 of their paper). Using this length scale

for L*, and a value of 8 mm, we find that the measurement points of

Westin et al. (1994) lie within the range of sx*/L" values between

about 0.2 to 2.0. These estimates, which are in sharp disagreement

with those made by Bertolotti (1997), suggest that, while linear

theory should be able to describe the initial stages of the Klebanoff

mode evolution, nonlinear effects are likely to be important further

downstream.

Gulyaev et al. (1989) used solutions of the linearized, unsteady

boundary-layer equations to describe the evolution of Klebanoff modes.

They showed that the boundary-layer fluctuations are driven by two

independent components of the free stream motion; a two-dimensional

component, which is relatively benign, and a three-dimensional one

that exhibits significant streamwise growth and therefore provides the

dominant contribution to the rms streamwise velocity fluctuations.

However, as even Gulyaev et al. (1989) point out, the Klebanoff modes
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cannot actually be described by the Prandtl boundary-layer equations

because the spanwise length scales of these modes are usually of the

same order as the local boundary-layer thickness at the streamwise

location where most of the experimental measurements are taken.

In this paper, we carry out a systematic asymptotic analysis of the

effect of vortical free-stream disturbances on a laminar flat-plate

boundary layer. We assume that the turbulence Reynolds number is

small enough so that the problem may be linearized. Our results show

that the analysis of Gulyaev et al (1989) applies only at very small

distances from the leading edge and that, in the region where

experimental data are taken, the Klebanoff modes are governed by the

unsteady boundary-region equations, i.e., the Navier-Stokes equations

with the streamwise derivatives neglected in the viscous and pressure-

gradient terms (Kemp1951). The boundary-region equations are

elliptic, rather than hyperbolic, in the crossflow plane, and this has

a significant effect on the solutions.

Unlike the Bertolotti (1997) analysis, the upstream and far-field

boundary conditions for the boundary-region equations solution result

from strict asymptotic matching with a real;Lstic free-stream turbulent

flow.

The problem is formulated, and the appropriate scaling is developed in

Section 2. In Section 3, we consider the inviscid flow above the

boundary layer. The linearized unsteady bolndary-layer region is

discussed in Section 4, and the region wher_ the linearized unsteady



boundary-region equations apply is discussed in Section 5. In Section

6, the long transverse wavelength limit of the boundary-region

solution is compared with the boundary-layer results, and it is shown

that the spanwise ellipticity effects are much stronger than would be

expected from order-of-magnitude considerations. In Section 7, we

derive an expression for the streamwise velocity correlation function

in the boundary layer by combining the individual Fourier-component

solutions to the boundary-region equations with the upstream

turbulence spectrum. The corresponding computations are presented in

Section 8, and the results are compared with data from some of the

more recent experiments. The results of the analysis and computations

are discussed in Section 9.

2. Formulation and Scaling

We consider the flow over an infinitely thin flat plate due to a

stationary, homogeneous, grid-generated turbulence field. The

relatively weak turbulence field that is imposed in most of the

experiments is reasonably well-represented by a purely convected

perturbation, say

. - i= eu®(x - t,y,z) , (2. I)

of a nominally uniform mean flow, U_, over a sufficiently small

streamwise and transverse region, i.e., on a local basis (see Sections

^ { }3 and 6 below). Here x=xi+_+z_= xt,x2,x 3 denote the Cartesian

coordinates normalized, along with all other lengths, by the

transverse integral scale of the turbulence, A, with x in the



direction of the uniform mean flow, y normal to the plate, and z along

the span. The time, t, is made dimensionless with A/U_, while the

velocities and pressure are normalized with U_ and pU_2, respectively,

where p is the (constant) density. The small parameter _ is a measure

of the turbulence intensity, and the scaled turbulence velocity u_

must satisfy the selnoidal condition

V.U_ =0 , (2.2)

but can otherwise be specified arbitrarily .as an upstream boundary

condition.

Since the upstream turbulence is assumed to be stationary and

homogeneous, it can be treated as a superposition of harmonic

disturbances of the form

with

where k = {k,,k2,k3} .

U® = U®e I(k• *,t) , (2.3)

fi®-k=O, (2.4)

We suppose, at least initially, that the turbulence Reynolds number

is O(i) where

rt = aRA , (2.5)

RA=U_A/v

is the ordinary Reynolds number based on A.

(2.6)

This corresponds to a

kind of generic scaling from which the limits rt -_ _ and rt -+ 0 can be

obtained as special cases.
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Then in the asymptotic limit g --_ 0, RA-+ _ with rt held fixed at 0(I),

the flow divides itself into four distinct asymptotic regions (see

Figure I).

The first of these is a primarily inviscid region of dimension 0(A)

surrounding the leading edge, in which the motion can be treated as a

linear perturbation about a uniform flow.

Beneath the linear region _ is a region (denoted by _) where the flow

is governed by the linearized unsteady laminar boundary-layer

equations (Gulyaev et al., 1989; Goldstein, 1983). However, the mean

boundary-layer thickness, AS, continues to grow with x, and this

solution will become invalid at the downstream distance 12RA/A where AS

becomes of the order of the spanwise length scale I of the unsteady

boundary-layer flow, which may, as we shall see, differ from the

integral scale A. A new solution must then be obtained when

(/I s Ax"x� ,% ,
(2.7)

i.e., in region ®. The flow in this region is now fully three-

dimensional, because the spanwise derivatives in the viscous terms are

no longer negligible compared with the normal derivatives. It will be
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shown subsequently that the unsteady components of the motion move out

of the boundary layer with increasing downstream distance, and only

the low-frequency components of the motion remain. The flow then

evolves on the slow time scale

(2.8)

and is governed by the unsteady boundary-region equations (Kemp,

1951), which are just the Navier-Stokes equations with the streamwise

derivatives neglected in the viscous and pressure-gradient terms.

Since the linearized unsteady boundary-laye:: solution grows linearly

with x, it is easy to see from (2.7) that the solution in region _ can

be linearized about the undisturbed, Blasius solution when

_.R^ = r, << 1 (2.9)

Finally, the flow in the large outer region _ is in general nonlinear

and corresponds to the usual equilibrium de:;ay of grid-generated

turbulence. It can, however, be linearized when the turbulence

Reynolds number rt is much less than one and, more generally, will

behave locally like a convected perturbation of the type (2.1) over

distance XL, for which

XL << I/c = RA/rt (2.10)
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which means, in effect, that it can be linearized over such distances.

These order-of-magnitude estimates are somewhat optimistic in that

they do not properly account for the enhanced nonlinearity that can be

produced by the smaller scale components of the turbulence. They

should, however, be good enough to provide adequate estimates of the

overall behavior of the flow.

Finally, we suppose that the upstream turbulence _ is specified at a

distance -XL t, which is large compared to unity, but small compared to

12RA/A2, i.e. ,

1 << -x,_t << R A (2.11)

The mean flow in this region will, in general, be nonuniform (see

Section 3 and Section 6 below), but it will vary slowly enough so that

the upstream boundary condition (2.1) or (2.3) can still be specified

on a local basis independently of that flow.

3. The Linear Inviscid Solution

The inviscid flow in region _ can be determined by generalized rapid-

distortion theory (Hunt, 1973; Goldstein, 1978). Since the problem is

linear, we need only consider individual Fourier components (2.3) of

the upstream distortion.
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The flow in this region, where x and y are order one, is given by

Goldstein (1978) as

u= V_+ 4V@+ u(_)), (3.1)

- + V_.V , (3.2)

where

u_ (:) = u®(X- _'t). OX_,
(3.3)

is the known potential for the mean flow about the plate (including

boundary-layer displacement effects), and

(3.4)

with _ denoting the mean-flow stream functi3n and A the Lighthill

(1956)-Darwin (1954) drift function.

For the infinitely thin flat plate of interest here, the complex mean-

flow potential is given, to the required order of accuracy, by

• 12(x +iy)

* + iqJ= x + iy- tflv -R-A ,
(3.5)
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(Van Dyke, 1964, pp. 132-135) while the corresponding drift function

is

[.o12(x+;y)l
J' (3.6)

where fl_ is the nondimensional displacement thickness determined by

the Blasius solution with _ = 1.217 (Schlichting, 1955, page 106).

Finally, the perturbation potential _ is determined by the Foisson

equation

V2#=-V. u (') , (3.7)

subject to the boundary conditions that

#=0 aty=O,x<O , (3.9)

(') _21--_- k,_o ei(k'-k'') at y = O, x > 0
_y + U 2 =

V1%
(3.10)

where v_ is the scaled blowing velocity determined by the boundary-

layer solution in region _ and defined by (4.13) below.
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The order |/_A boundary-layer displacement effects in (3.5), (3.6),

and (3.10) will need to be included in Section 5.2 below in order to

derive the upstream matching conditions for the flow in region _.

However, for the purposes of analyzing the flow in region _, only the

leading-order term is needed. Therefore, it follows from (3.3),

(3.4), (3.5), and (3.6) that

U (I) ---- U I _/4 2 _/,4 3 e i(k'x-klt) H- (3.11)

The leading-order solution of the boundary-value problem (3.7)-(3.10)

can be obtained using the Wiener-Hopf technique (e.g., Choudhari,

1996), but our interest is in the downstream form of the solution

which can more easily be found by applicati(n of the method of

variation of parameters. When the result, along with (3.11) and

(3.5), is substituted into (3.1), we obtain

_.. . i[k,(x-t)+k3z] (I;
U=t +...+6e _ _U "... (3.12)

p=-_+..- (3.13)

where

u_"(1) _uae +--U 2e
Y

for :_ = 1,3 , (3.14)

(3.15)
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wit_z--4k,_+_.

The inviscid velocity at the surface of the plate (y = 0) is then

given by

= [,lI 3-
Y

(3.16)

us<,) ^- ik3 ^.=U 3 +--u 2 (3.17)
Y

4. The Linear Boundary-Layer Solution

Since the mean boundary layer is of the Blasius type, the solution in

region _ corresponding to the single Fourier-component inviscid

solution (3.12)-(3.15) is of the form

u= F'(U), I2--_, (_F'-F),O }

+c i o( ,r/),_/7_-, Vo(-_,r/),wo(-/,r/) el("'-*'° •
(4.1)

with the Blasius function determined, in the usual way, by
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F'" + FF"=O , (4.2)

with F(0) = 0, F'(0) = 0, F -+ _-_ as q -+ o0,

r/=y =0(1) , (4.3)

and

= klx , (4.4)

is a scaled streamwise variable. The velocity perturbation is

determined by the unsteady, linearized, three-dimensional, boundary-

layer equations

-iU-o+ F, oU_o_ F ou_io uo rlF,,+ VoF,, I D2_o
D£ 2_ o37 2_, -2_ Drl _

,o7_ o F _;o 1 D2_o

-i_ o+F _ _-_ -_-2._ Dr/a '

(4.5)

mo

22 + ---_-- + i _o=:0 ,
(4.6)

subject to the boundary conditions

uo =Vo =Wo =0 at r/=0 , (4.7)

-- -i9
and that Uoe and Fo e-ix match onto (3.16) a:_d (3.17) as _ -+ oo.
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Since kl and k3 only appear as multiplicative factors in (4.6), the

boundary conditions (3.16) and (3.17) suggest that we divide up the

solution in the following way (Gulyaev et al., 1989)

ik,_.).., k_ +ik__o= _;_+7 u,j. '_'+i-(_; _:)_k, y
(4.8)

Vo= ,_;'+ik,,/Iv,o, + ,_;ov ,
y _) k,_ 3 y

(4.9)

and

_ ( ik,^:'__Wo=c,;+T,,=jw (4.10)

Then t_i.__,V,_jand t__.(0),V(0),0j_each satisfy the momentum equations (4.5),

the latter satisfies the continuity equation (4.6), while the former

satisfies

0_ q cu-m 8V

o_ 2, o__+_=o (4.11)

Both components satisfy the no-slip condition (4.7) at the wall, and

matching with (3.16) and (3.17) requires

_-+0, _---> e _ }_(o) ___ e a
as D -_ m. (4.12)
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The solution of (4.5) and (4.6) (or (4.11)) must satisfy appropriate

upstream boundary conditions as x-->0. The time-dependent terms

-iu o and -tw o drop out of (4.5) in this limit, and the relevant

solutions are easily shown to be

u-_ 2 '
as x-_0, (4.13)

which shows that the streamwise velocity _(0, remains bounded while

grows linearly with x.

We shall make use of the fact that the blow:rig velocity, which appears

in (3.10), is defined by

(4.14)

and, in view of (4.8)-(4.10) and (4.13), behaves like

(4.15)

as x--_0. This result will be used in Section 5.2 when the upstream

boundary conditions for the solution in region _ are considered.
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The solution in region _ depends on the frequency parameter, kl. only

through the scaled streamwise variable x. The limit x-->_ may

therefore be interpreted as either the high-frequency limit, k1-+_,

with x fixed or the downstream limit, x-->_, with kl fixed.

Similarly, the limit x-_0 may be interpreted as the low-frequency

limit, k1-_ 0, with x held fixed or the upstream limit, x -) 0, with kl

fixed.

{u(°),v(°),0} has no crossflow component and is therefore two-

dimensional. The most recent numerical solutions for this quantity

are given by Choudhari (1996). His results show that the disturbance

velocity moves out of the boundary layer as x increases.

Our interest here is in the three-dimensional component, {u,V,w},

whose streamwise velocity initially increases linearly with x at a

rate which increases with increasing spanwise wave number. Before

presenting numerical solutions for this component, we first consider

its asymptotic solution as x-+_.
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4.1 Asymptotic Solution for x--_

This solution is of the WKBJ form

{_,V,W}={U'(rl, X'), V(rl,_____x).,4t_" ' _-(r],._)}e;r_ 24i7o(,7 )
(4.16)

in the region where N = 0(I).

Substituting this into the linearized boundary-layer equations and

taking the limit as x-->_ shows that

®,x =i(F'-l) , (4.17)

at lowest approximation, and that at next order that crossflow

amplitude W is determined by

(F'® - FO')W = 2®'W' + ®"I4" , (4.18)

with a similar equation for U.

Equation (4.18) is easily integrated to show that

_ Co(j_) e,,O,)÷; z-_o
4-ff

(4.19)
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where

O(r/)=e -;''4 [ _-F' dr/ , (4.20)

and

H- gn F" + --_- dr_

0

, (4.21)

which clearly shows that w decays exponentially fast as x-+_

provided _=0(I). But _--_0 as U-+_, and the WKBJ approximation

therefore breaks down, i.e. it has a turning point, when

_-_®: 0(I) , (4.22 )

or in view of the fact that, F-_+_ exp , as

_=tl-fl-_oo, with A=0331 (Schlichting, 1955), when

--3 -I

2_A= rl- e _ _2 (4.23)
4

A new solution, therefore, has to be obtained in this region, which we

refer to as the edge layer. The relevant expansion for this region

was first proposed by Gulyaev et al. (1989) and is developed here in

more detail in Appendix A.
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While the solution (4.19) is exponentially small at q = 0 , it still

does not vanish there. However, it can be canceled out at this point

by adding a multiple of the additional solution corresponding to the

other root of (4.17). This amounts to replacing _(q) in (4.17) by

®-,2® (o) -® (q) , (4.24)

which also satisfies (4.17). This solution is exponentially smaller

than (4.19) for all _>0 and is therefore negligible there. A similar

procedure can be used for the other velocity components. But in doing

this, use has to be made of an additional exact solution discovered by

Lam and Rott. The result is again negligible compared with the

primary solution for all N>0.

This analysis shows that the velocity fluctlations actually move out

into the edge layer as x-+_ with kl fixed arLd that the boundary-layer

fluctuations at any given x will be dominated by the frequencies

corresponding to x=klx=0(]).

4.2 Numerical Solution

Since the mean flow is two-dimensional, the spanwise momentum equation

can be solved independently of the streamwise momentum and continuity
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equations. The latter two equations can be solved by decomposing the

transverse velocity as follows:

_=?(_) +_(2) , (4.25)

where

8_(2)
--+w=0 , (4.26)

and

+ -0 (4.27)
2U

- --(0
V(2) can then be computed from (4.26), and u,v from an inhomogeneous

form of the two-dimensional, linearized, unsteady boundary-layer

equations--once the spanwise velocity has been found.

A streamwise marching procedure, based on second-order central

differences in _ and backward differences in x, is used to obtain the

solution at a desired streamwise station using the previously computed

solutions upstream. Simpson integration is used to compute _(2). Two

terms in the upstream expansion, x-+0, of which the first of (4.12)

is the leading term, are used as the initial condition to start the

procedure.
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Figures 2-4 are plots of the streamwise and spanwise velocity profiles

computed from the boundary-layer equations. These results, like those

obtained by Choudhari (1996), show that the disturbance velocity moves

out of the boundary layer with increasing x, but at a slower rate than

the (_(0) _(0)) component, and that the streamwise velocity exhibits a

pronounced peak at an order-one value of q, which increases toward the

boundary-layer edge as x increases.

As noted by Choudhari (1996), this streamwise velocity profile

strongly resembles that of the Klebanoff modes generated by turbulence

in the free-stream--even though these results correspond to a single

Fourier component of the free-stream motion.

Figure 5 is a plot of the peak of the streamwise velocity and the

associated transverse position as a function of x. The asymptotic

solutions shows that its spanwise location, say _0, moves out of the

!

boundary layer like (_nx) 2 as i-+_0 (Brown and Stewartson, 1973).

These numerical results, together with the asymptotic solution,

suggest that the streamwise velocity fluctuations will be dominated by

their low-frequency components, k1<<l, at the large downstream
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distances where x>>l. And since the actual physical solution is

multiplied by the wave number ratio k3/kl, the small spanwise length

scale components should exhibit the most rapid growth, which is

consistent with the observations by Klebanoff and subsequent

researchers.

Klebanoff found the spanwise wave length to be five times larger than

the boundary-layer thickness, but in most, (if not all) of the more

recent experiments (Kendall, 1985; Westin et al., 1994), the spanwise

wave length was found to be nearly equal to the boundary-layer

thickness, so that the relevant solutions cannot be determined by the

linearized boundary-layer equations. This may, of course, only apply

to the u,v,w component of the solution; the u(°),V(°) component is not

subject to the short spanwise wave length selection process and may,

therefore, continue to be governed by the linear boundary-layer

equations until the boundary-layer thickness becomes 0(A). (See

discussion in Section 2.)

5. The Linear Boundary-Region Equations

As the low-frequency, small spanwise length-scale components of the

unsteady motion grow downstream, and the boundary-layer thickness

continues to increase, the classical boundary-layer equations
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eventually become invalid. This occurs wher, x_ R A (see eq. (2.7)),

and since 5=klx remains order one, this implies that kiR A = 0(I).

Introducing the relevant component of the pressure,

ik 3 ^®_ - • _' ','>,P=7
(5.1)

and the rest of the scalings in Section 4, :_nto the linearized Navier-

Stokes equations, we obtain

Dfi F D-_ r]F" 1 2_-tW+F'--- _+VF'=--- -
2/0q 2_ 2/u_, ,

(5.2)

F_ t --- - I

-N + F'-- ['_¢mF' J'-F 1
05 2._0q (25) 2

- 1 D2V
I D_ + _:.2V,v (qF')' =+

2_ 25 erl 25 erl 2

(5.3)

D_ F D_ I D2_i

- i_ + F' -- _ _:2_ + °3"/2 _a5 25 & 25
, (5.4)

,9_ q 0_ DV

D5 25 o_q FDr/+W=0
¢ (5.5)

in the limit kl/R A _ 0 with _,y= _I), where we have put

_c=k 3/_ =0(1) (5.6)

Following Kemp (1951) and Davis and Rubin (1980), we refer to (5.2)-

(5.5) as the linearized, unsteady boundary-region equations. They are
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simply the linearized Navier-Stokes equations with the streamwise

derivatives neglected in the viscous and pressure-gradient terms, and,

as we have shown, they correspond to a rational asymptotic limiting

form of the Navier-Stokes equations.

The boundary-region equations must be solved subject to appropriate

far-field and upstream boundary conditions which, despite the similar

nature of the equations, are rather more intricate than those for the

boundary-layer equations. We derive the edge conditions for _ -_ _ by

first considering the flow above region _. The large-_ solution of

(5.2)-(5.5) that matches with this solution then provides the correct

edge boundary condition. The upstream condition for x--_0 must now,

in addition to being specified for _ = 0(I), be provided over the

larger region Y0 =_ 2_=0(I) to account for the increased boundary-

layer thickness in region _.

We again need only consider a single Fourier component of the upstream

distortion velocity (2.3), but, as noted in Section 2, the mean

boundary-layer displacement will now affect the solution for the

perturbed flow at leading order. In the outer region described by

klx, kly = 0(i), the velocity expands like

n = ' 8xx ,0 + _i(*3z-*'t)a(°)+"" ,
(5.7)
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where the mean-flow stream function • is given to the required order

of accuracy by (3.5), and since the pressure fluctuation will vanish

in this region, the perturbation velocity u i°)=u(°)(x,y) is determined

by

0 O_F 0 1 0 2 ]-i+ 0_ 0_ Oy klR ^ Oy 2 +tc2 u(°) =0
, (5.8)

which becomes

-i+ + tc 2] u _°) = O(k, ) , (5.9)

upon introducing • as a new independent variable. The solution that

satisfies the upstream boundary condition in (2.3)for k,yl<<l Zl, as

well as the continuity equation, is

u (°)= fi_ei(Z+k_v)-(r'+r2')(_-9[), (5.10)

where x_-klX _ and

IC2- k2 / X[-'_lR ^ , (5.11)

is a scaled transverse wave number. It follows from (3.5) and (A-I)

that

y(O)

_---> _ as k,y->O, _>0 (5.12)

and therefore that
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as region ® is approached where

y(0)= _-_ _ , (5.14)

use has been made of (2.11).

5.1 Far-Field Boundary Conditions

The results of the previous subsection can now be used to determine

the outer-edge boundary conditions for the boundary-region equations.

Using the large _ form of the Blasius solution in (5.1)-(5.4), and

rewriting in terms of Y0 =_ 2_, yields

fl Ea 8_F

- iF + _-_ + _ 8Yo - Oy_ - tc2F
, (5.15)

K'ZV , (5.16)

P _ 82_
I iw _ _ _ 24_By0- _P +,gy_--_'_- , (5.17)

OF 8_
(5.18)

The solution to (5.15)-(5.18) that matches with the outer solution is
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_=0 , (5.19)

v =
(K"2 --/'_-K'-[) 2_ieiz {eir2/°_-(r_+r_')_ --e-lr [/°1 } +---_-]K[eiie-lr[/°)io; g(x)e-_d_i "

(5.20)

w-
ei£ £

I¢2 --)11cl {Ic2ei':_y_°_-t'_2+'_1)_-ilcle-l'c]y_°_}+l¢2ei_e-I'c[/°_ _o g(:r)e-iidx " (5.21)

and

= g(._)e-I"lY '°> , (5.22)

where we have used (2.4) with k1<<k2,k3.

Equations (5.19)-(5.22) then provide the form of the far-field

boundary conditions to be imposed on the bolndary-region equations.

The function g(x) is, at this point, unknown, but its behavior as

x-f0 will be determined in the next subsection by matching (5.22)

with the solution in region Q.

5.2 Upstream Boundary Conditions

Since the boundary-region problem describes the evolution of the low-

frequency Fourier components downstream of the initial boundary-layer

stage, it follows that the appropriate upstream matching conditions
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for this problem are given by the low-frequency downstream limit of

the solutions in regions Q and _ (i.e., the limit as x-_ with i <<I).

The leading-order terms in the low-frequency, downstream limit of the

velocity fluctuations in region • are arrived at by a straightforward

reexpansion of (3.12), (3.14), and (3.15) using kl << k2, k3 along with

(2.4). Obtaining the leading-order term for the pressure fluctuation,

however, requires (as noted in Section 2) accounting for the boundary-

layer displacement effects. This can now be done by using (3.3)-

(3.6), (4.13), and solving (3.7)-(3.10) to order I/_. Reexpanding

the result for kl << k2,k3, x >> 1 leads to

(5.23)

It then follows from (3.2), (3.5), (3.12), (3.14), and (3.15) that

u-_O , (5.24)

i [ei_2yo _ e-I_lyo ]v_+(r=_iFKI) 2 . t , (5.25)

(5.26)

3fl 1___e-I,clyo

41 .14 '
(5.27)
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as i-->0 with Y0 =U 2_ held fixed. Comparison of equations (5.22)

and (5.27) gives the leading order behavior of g(x) for x-->0.

This completes the specification of the boundary-region problem. In

the next subsection, we describe the numerical method used to obtain

solutions.

5.4 Numerical Solution

The finite difference approximation for the boundary-region equations

is essentially the same as that used for the boundary-layer equations,

except that it was necessary to compute the pressure, absent in the

boundary-layer computations, on a grid staggered in the transverse

direction relative to that for the velocity components. The treatment

of the initial and edge boundary conditions, however, is quite

different.

As already mentioned, the upstream boundary conditions must now be

provided over the region Y0 = 0(i), as well as for _ = 0(i). A

composite solution constructed from the solutions for x-->0 with

= 0(I), (4.12), and Y0 = 0(I), (5.24)-(5.27), was used as the
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starting condition, and it was found that two terms in the upstream

expansion, x-+0, were required to successfully start the procedure.

The edge boundary conditions (5.19)-(5.22) involve the unknown

function, g(x), induced by the pressure in the outer region. This

unknown function was eliminated by imposing the mixed boundary

conditions

#-+0 , (5.28)

8r/
(5.29)

(5.30)

and

8 ÷kl ,
8q

(5.31)

as q -+ _.

Second-order finite differences were used in these boundary

conditions, and a block tri-diagonal linear system of equations is

obtained, which was solved using a standard sparse system algorithm.

All the equations must be solved simultaneously in this case, because

of the coupling through the pressure.
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Figures 6 and 7 show profiles of the magnitudes of streamwise and

spanwise perturbation velocity profiles at various values of

computed from the boundary-region equations with K = i, K2 = -I. The

streamwise velocity profiles look similar to the corresponding

boundary-layer profiles, but the strong spanwise ellipticity effects

cause the peak level, which initially increases linearly with x, to

rapidly decrease to zero. The spanwise velocity profiles are quite

different from the boundary-layer profiles (see figures 2-4) due to

the matching requirements of (5.30).

The initial linear growth and subsequent decrease of the peak in the

streamwise perturbation velocity profile is more clearly shown in

Figure 8, which is a plot of lul as a function of x at _ = 1.64, where

the peak in the profiles occurs.

I !

Results from additional computations show that the peak of the lul

profiles reaches a maximum and then decreases to zero very rapidly for

larger values of K and (absolute value of ) K2; while at smaller

values, the initial growth and ultimate decay are much more gradual.

The linearized unsteady boundary-region equations possess a similarity

solution of the form
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(5.32)

(5.33)

(5.34)

in the limit as K --_ oowith --=0(]), where u,v, andvv are now determined
K

by the linearized steady boundary-region equations.

Figure 9a is a plot of _2_ vs. K2x at a fixed _2 =_], _ = 1.64 for

various values of K _ I. These results clearly collapse on a single

curve for K _ 2, and even the K = 1 result is not too far from this

curve. In Figure 9b, we have plotted the same results vs. _.

Notice that, except for a small region near the origin, the steady

solution increases linearly with _ (and therefore with the

boundary-layer thickness) up to _ of about 0.5. This might lead

one to suppose that the Klebanoff modes can be represented as a single

steady mode (Bertolotti, 1997), but, as we shall see, the unsteady

(but low frequency) solutions make the dominant contribution to the

rms of the streamwise velocity fluctuations in the boundary layer.
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On the other hand, the boundary-region equations reduce to the

boundary-layer equations in the limit as K -_ 0. Figure I0 shows plots

_2
of lfflvs. 9 at fixed --=-I, and H again equal to 1.64, at various

values of K _.I. The dashed curve denotes the solution calculated from

the boundary-layer equations. The results show that solutions to the

boundary-region equations approach the boundary-layer results very

slowly as K -+ 0 so that the linearized unsteady boundary-layer

solution used by Gulyaev et al. (1989) to calculate the streamwise

velocity fluctuations is only valid for very small spanwise wave

numbers. This shows that the full linearized unsteady boundary-region

solutions must be used to describe the experimental results in which

the spanwise wave length is invariably of the order of the boundary-

layer thickness.

Figure II is a plot of profiles of the streamwise velocity for

various values of x, with K = I, K2 = -I. 'Che results clearly come

close to collapsing on a single curve. The dashed curve is the

normalized mode shape HE" that appears in the upstream boundary

condition (4.12). This is the mode shape originally used by Taylor

(1939), and later by Klebanoff (1971), to fit their experimental data.

We will use the computed solutions of the boundary-region equations to

evaluate the rms of the streamwise velocity perturbation in the
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boundary layer due to a broadband turbulent flow. But first, we will

examine, in more detail, the long wavelength limit of the boundary-

region equations, since the slow convergence to the boundary-layer

solution has such a dramatic effect on our results.

6. Long Wavelength Limit of Linear Boundary-Region Equations

The linearized, unsteady boundary-region equations (5.2)-(5.5) reduce

to the linearized unsteady boundary-layer equations when K,K2 -+ 0,

i.e., in the long spanwise wavelength limit. Results from our

numerical computations of the previous section show that this limit is

approached very slowly.

In the long spanwise wave-number limit, the boundary region solution

expands as

(6.1)

--± + +
K

(6.2)

Substituting (6.1)-(6.2) into (5.2)-(5.5) shows that the leading-order

solution is simply the linear unsteady boundary-layer solution. At
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the next order, the boundary-layer streamwise momentumand continuity

equations hold, but the spanwise momentumequation becomes

o'_ (I) F o%_°) ] 02_ °)
- i_ ('_ + F-- - _ _(o) +

©_ 2._ Or/ 2.f 8r] 2
, (6.3)

with

_(') --+ _2-_[(iz- l)(r/-,b') + _(_)]e '_ , r/--+ oo , (6.4)

and

_(°):[ 2_-_(_)]'e i_ , (6.5)

where X=/¢2 /_c=O(1) and_(_) is determined from the leading order problem

as

=lim[V% + r/-p] (6.6)
r]--_ao

The upstream boundary conditions at this order are

_(') __ (2._) 3'2 O(r/)e' _ , (6.7)

V(') _.+ .42-_R( rl)e ' _ , (6.8)

_(') .__ _2-_ S( rl)e ' _ , (6.9)

for x-_0, where Q, R, S are determined by a system of ordinary

differential equations determined by substituting (6.7)-(6.9) into the

38



governing equations. These are essentially the same as those to be

solved in obtaining the second term in the starting conditions for the

boundary-region equations solution.

Figures 12 and 13 show results from computations of the leading-order

(boundary layer) solution and first-order correction for the

streamwise velocity component for % = I. The results show that lu(')I

quickly becomes quite large compared with lu(°)I so that the expansion

(6.1) and (6.2), and hence the boundary-layer approximation, becomes

invalid. Equations (6.3)-(6.5) reveal that it is the pressure term

_(0), induced by the leading-order transverse velocity, which causes

the rapid breakdown.

The boundary-region (or spanwise ellipticity) effects are seen to come

in very strongly, making the boundary-layer approximation valid for

only very long spanwise wavelengths or very near the leading edge. It

is clear, then, that the analysis of Gulyaev et al. (1989), based on

the boundary-layer equations, cannot adequately describe the evolution

of Klebanoff modes, whose spanwise length scales are generally found

to be of about the order of the boundary-layer thickness, except in a

very small region close to the leading edge.
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In the next section, we derive the formulas needed to compute the

statistical quantities within the boundary layer using the numerical

solutions to the boundary region equations.

7. Statistical Quantities in the Boundary Layer

A great advantage of the linear analysis is that the solutions for the

individual Fourier components within the boundary layer can be

superposed to evaluate the statistical quantities of interest in terms

of the upstream turbulence field. The decomposition (4.9)-(4.10)

provides the relevant _transfer functions" which relate the

fluctuating velocity within the boundary layer to the Fourier

coefficients of the upstream turbulence. (Hunt, 1973; Goldstein and

Durbin, 1980).

The quantity of most interest is the two-point, time-delayed,

streamwise velocity correlation, Rn(_,_), w_ich, as shown by Batchelor

and Proudman (1954) and Hunt (1973) can be expressed in terms of the

upstream turbulence spectral tensor, _._, as

R_(g,r)= _f ; e_(*_-*")m_e'(x,y,k)m_m(X,v,k)cD.t.,(k)dk

--oO

(7.1)

where, in general,
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= _(o) ik i ._. k_ ik 3
ml I ;m12 = _tu_ __;ml 3 = ,

7 klY -_, ff

and the * denotes complex conjugation.

(7.2)

The simplest upstream spectral tensor is probably the one

corresponding to isotropic turbulence, namely

(7.3)

where E(k) is the three-dimensional spectrum function, _ij denotes the

Kronecker delta, and k=4k $ +k22 +k ] .

Using this, along with (7.2), in (7.1) shows that the two components

of the boundary-layer flow contribute separately to the streamwise

velocity correlation (Gulyaev et al., 1989) which becomes

--cO

(7.4)

We only consider the contribution to (7.4) of the three-dimensional

component u, which clearly makes up the dominant contribution at low

frequency. Changing integration variables using x=klx and using the

fact that u(-x,u,i_2,i_)=u'(i,_,_2_ ), which can be shown from the

boundary-region equations and boundary conditions, the zero-time-delay

correlation becomes
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(I_2 :Iillx 1

o _ +_ +k_

e ik3( k 21u ( x , rl, k _ _-_A , k _ -_x_ V d k 2d k3d 2 "

(7.5)

Introducing the polar coordinates

2k 2 = k 2 - cos O, k 3 = k 2 - sin 0 yields

6ZR^ _ E(k)_e{¢_i"°) k2- sin20R,,(_,o)- _ ; k g x-_
i/x

Ik2-(_)Z6cosO Ik2 - (_)2 6sinO

24_ ' 2_
dOdkd2,

(7.6)

where

(7.7)

is the local boundary-layer thickness.
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For isotropic turbulence, the three-dimensional spectrum function,

E(k) is related to the one-dimensional spectrum function, El(k), by

d 1 dE_ (7.8)
E(k) = k 3 dk k dk

Using this expression in (7.6) and integrating twice by parts yields

2 __ _ 262RA 1 {1 (_ E_(_/x)u(x, rl,O,O) + E,(k)
R,,((,0)- 47r o _- 2\x) _/_

d 1 d k2(k 2_(_/x)2)
dkkdk

2_

ei(_ sin2° sin20
0

2 2k 2 - 6COS 0 k 2 - 6sin 0

_'_' 4_ ' 2_
dOdk}d_.

(7.9)

Our interest here is in the downstream (low frequency) limit ---+0 of
x

the urms in the boundary layer

R_,(0,0)- 62 RA S kE,(k)K(rl, k;g)dk ,
4x

0

(7.10)

where

X(rl, k,6) -
1010

k 8k k Ok

kgcos 0 k$sin O_ ]2

4_ ' _ ) I sin'0d_ . (7._1)
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Since it is very difficult to generate truly isotropic turbulence in a

laboratory experiment, Batchelor (1946, 195_;) and Chandrasekhar (1950)

proposed a less restrictive, axisymmetric turbulence model. In

Appendix C, we show that the corresponding spectral tensor can be

written as

+4 <,>,(,<,_<_,:-k,k,,<_,,-,_,k_,.<_,,+k_<_,,<_,,)
k.

(7.12)

where

k_. =-k i - 8,.l k I ( 7.13 )

are the cross-stream, wave-number components,

<%_-4j - 4,a_, 17.14_

is the cross-stream Kronecker delta, kl =,q_{+k_ , and the scalars

_),(kl,ki) and (_,(k,,k±) are related to the longitudinal and lateral one-

dimensional spectrum functions E1(kl) and Et kl), respectively, by

ao

E, (k I ) = 21r _ _lk. dk± ,
o

(7.15)

and
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Et(k I ) = 2_r_ cbtk_dk _
0

(7.16)

In this case, there is a contribution to the streamwise velocity

correlation from cross products of the u and_(°) components. But again,

we consider only the dominant u contribution. Then using (7.12) in

(7.1), with (7.2), changing variables of integration, and taking the

low-frequency limit, as in the isotropic case, shows that the mean

square of the streamwise velocity fluctuation can be written as

R,,(0,0)=:R^; kl)Xo(,7,k .6)akl,
0

(7.17)

where

I< °>IK° (r/'kJ'6) = oo;; sins22 0 _ .2, r/, k±c_ sin.¢t-_ 'O k±6cos_ d6_iY
(7.18)

These results show that only the transverse spectral function, _t, of

the upstream turbulence is of direct relevance to the generation and

growth of disturbances in the boundary layer, as opposed to the

longitudinal spectrum function which is most often documented in the

experiments. The former function can be determined from measurements

of the transverse correlation function

R.__t (_- r,q ) = ul (x - t, y,z)ul (x'-t', y',z') , (7.19)
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where X=x,_x, r=t'-t, and r. =4(y'-y) 2 +(z'-z) 2 ,

by taking the Hankel transformation of its longitudinal Fourier

transform

_,(k,,k.L)= 2 _ r± R®±(_- r,q)e_(¢-_)k'd(_ - r)Jo(qk__)dq
0 --eo

(7.20)

As far as we know, no such measurements have been made, so the form of

this function is still unknown and may differ considerably from one

experiment to another. Moreover, the present results show that only

the low-frequency portion of _t determines the velocity fluctuations in

the boundary layer, which is the part of the spectrum that is likely

to be highly anisotropic (Batchelor, 1956, p. 91)--retaining a history

of the upstream screens or grid which produced it. The low-frequency

spectral components should therefore possess a relatively high degree

of periodicity in the transverse wave number. The extreme limit of

this is described by

2u_ -- 2
• , 0,ki)=- -o2ki -#) , (7.21)

where $ denotes the Dirac delta function, kt characterizes the

periodicity of the low-frequency turbulence, and the constant factor

was chosen so that (7.16) satisfies the isctropic relation

Et(0)=2u_2/n, in order to be consistent with the measurements shown in

Figure 4. of Westin et al. (1994).
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Using (7.21) in (7.17) leads to the simple expression

R.(O,O)_ Ko(k:)
2 RA

(7.22)

The numerical results are presented and compared with experimental

measurements in the next section.

8. Numerical Results and Comparisons with Experimental Data

Numerical computations of the individual Fourier component solutions

of the linearized unsteady boundary-region equations were carried out

over a broad range of scaled wave numbers, K2 and K, in order to

calculate the mean square of the streamwise velocity fluctuations in

the boundary layer. The results for isotropic free-stream turbulence

are presented first. A number of different functional forms have been

proposed for the corresponding one-dimensional spectrum function El.

They are usually obtained by fitting of experimental data or from

assumptions about the correlation function behavior. Figure 14 shows

some numerical results for the normalized root mean square (rms) of

the streamwise velocity fluctuations, U'/U®%[_A, at fixed N = 1.64

(which closely corresponds to the peak location of the streamwise
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velocity fluctuations). They are based on the one-dimensional

spectrum proposed by Gulyaev et al (1989)

E 1(k) = 2u2® e-6Tk/_;"
x l+b(2k) 5/3 "

where b = 1.35/(1 + 35/(2rt)3/4), with our normalization. For

isotropic turbulence, the normalized rms streamwise velocity

fluctuation depends on the single parameter rt, which enters only

through the one-dimensional spectrum.

(8.1)

Notice that the normalized rms velocity fluctuation initially

increases linearly with 5, which corresponds to the result obtained by

using solutions of the linearized boundary-layer equations in place of

the boundary-region solutions. However, the spanwise ellipticity

effects quickly cause the growth to decrease below the linear

boundary-layer results, with the rms velocity fluctuations reaching a

peak and then decreasing with further increase of 6. This is because,

even for small 6, the boundary-region solutions selected by the

integration do not correspond to small values of K and K2. All the

curves reach approximately the same peak level, but those at larger

turbulent Reynolds numbers have greater initial slopes and peak at

smaller values of 8. These results show th6t the magnitude of the

streamwise velocity fluctuations in the boundary layer can reach three

or four times the free-stream level at RA values on the order of a few

thousand, which is consistent with the expe]_imentally observed

Klebanoff mode amplitudes found in the more recent experiments.
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The most well-documented of these experiments are those of Roach and

Brierley (1992) and Westin et al. (1994). The investigators attempted

to make the incident turbulent flow as isotropic as possible in both

of these studies. However, it is very difficult to control the low-

frequency component of the spectrum that actually enters the boundary

layer to produce the Klebanoff modes. Watmuff (1997) was able to

reduce the peak rms velocity in the boundary layer by as much as 50

percent by reordering the screens upstream of his test section

according to the quality of their spanwise uniformity. This suggests

that even relatively minor changes in the low-frequency spectral

characteristics of the free-stream turbulence can produce large

differences in the rms velocity in the boundary layer. The inevitable

deviations from pure isotropy that occur at low frequencies in any

experiment may therefore have an important effect on the velocity

fluctuations in the boundary layer.

Westin et al. (1994) conducted experiments at free-stream turbulence

levels of 1.35 percent and 1.5 percent. They estimated the transverse

integral scale of their free-stream turbulence to be between 7 and

i0 mm, based on extrapolations of their measured spectra. In the

following comparisons, we use a value of 8 mm, which corresponds to an

RA value of 2120 for their 1.35 percent run (with U_ = 4 m/s) and 4240

for the 1.5 percent case (U_ = 8 m/s). The corresponding values of rt

are 29 and 64 for the 1.35 percent and 1.5 percent cases,

respectively.
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The measurement points were in the range of 156 mmto 460 mm

downstream of the leading edge in the 1.35 percent case and between

102 mmand I000 mmin the 1.5 percent case. The corresponding scaled

streamwise variable Ex*/A varied between 0.3 and 0.8 in the 1.35

percent case and 0.2 and 2.0 in the 1.5 percent case. This suggests

that the linear theory may still be applicable to the data points

closest to the leading edge even though the turbulent Reynolds number

is not particularly small in these experiments. However, the data

points lying further downstream probably extend into the nonlinear

regime--in fact, beyond the point where a singularity was found to

develop in the steady boundary-layer solution (Goldstein et al., 1992,

and Goldstein and Leib, 1993).

Figure 15 shows comparisons of the linear theory predictions with the

data of Westin et al. (1994). The dashed curves, which correspond to

isotropic free-stream turbulence, fairly accurately predict the

initial growth rate in the experiments. Ho_ever, the strong spanwise

ellipticity effects in the boundary-region equations quickly cause the

growth to diminish, and the curves reach a more or less constant

level. While this level is below that of the experimental data, it is

of about the right order of magnitude. The agreement with the data is

better at smaller _ and, overall, at smalle_ turbulent Reynolds number,

consistent with expectations for the linear theory.
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The solid curves in Figure 15 were computed from (7.20) with kt, and

therefore the periodicity of the low-frequency turbulence, chosen to

achieve the maximum level of u rms. The results show greatly improved

agreement with the data as compared with the calculation for isotropic

free-stream turbulence. The deviation from the data is again maximum

at larger turbulent Reynolds numbers and at larger downstream

distances from the leading edge. Of course, the turbulent energy is

distributed over a finite wave-number band in the actual experiments,

and calculations based on an experimentally measured form of _t, if it

were available, would probably lie in between the solid and dashed

curves in Figure 15.

Roach and Brierley (1992) carried out experiments over a fairly broad

range of free-stream turbulence levels with a variety of turbulence-

generating grids. We compare our linear theory with data from four of

their runs--the others having either no organizing grid or extremely

high turbulence levels. Roach (1987) presents detailed measurements

of the intensities and scales of the turbulence generated by the grids

used in the Roach and Brierley (1992) experiments and suggests

empirical formulas for their description. Using these relations, we

estimate the turbulence intensity at the leading edge to be about

0.8 percent for their SMR grid and 3 percent for their PR grid. The

corresponding transverse integral scales are approximately 2.4 mm and

6.0 mm for the SM and PR grids, respectively. Runs were made with two

different free-stream speeds for each turbulence grid. At the lower

speed of 14.9 m/s with the SMR grid (the SMRLO case) RA is
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approximately equal to 2400, and rt is approximately equal to 19. For

the second run with the SMRgrid, called the SMRHIcase, the free-

stream velocity was 19.8 m/s, R^ = 3200, and _ _ 26. The PR grid was

run at 3 m/s (PRLO), corresponding to R^ =1200, _ _ 36 and at 5.3 m/s,

PRHI, with R A _ 2100 and _ _ 63. The measurement locations recovered

from these estimates ranged roughly between 85 mm and I.I m from the

leading edge for the SMR grid, corresponding to scaled distances _x*/A

from 0.3 to 4.0. With the PR grid, the streamwise locations ranged

from 41 mm to near the end of the plate (1.'7 m) so that Ex*/A ranged

from 0.2 to 8.5. This data then, like the Westin et al. (1994) data,

encompasses a region where we would expect the linear theory to apply,

but also extends well into the nonlinear regime.

Figure 16 shows the comparisons of the linear theory with the Roach

and Brierley (1992) data. The results are similar to the Westin et

al. (1994) comparison. The isotropic curve_ (dashed) begin with about

the right growth rate, and the greatest deviation is at large 8 and rt.

The solid curves are again computed from the strongly anisotropic

model and show improved agreement with the data.

These results suggest that low-frequency an_.sotropy, which is

certainly present in all experiments to some extent, could potentially

play an important role in the generation of the large amplitude

streamwise velocity fluctuations associated with the Klebanoff modes.
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There are, of course, additional effects which are present, to varying

degrees in these experiments, some of which are discussed in the next

section. We note here, however, that Westin et al. (1994) report

observing turbulent spots near their last measurement station at the

higher turbulence level. These must certainly be preceded by

nonlinear effects in the region upstream, and we would similarly

expect spots to have appeared in the PRHI data of Roach and Brierley

(1992) (rt = 63).

9. Discussion

We have carried out a systematic linear analysis of the effects of

vortical free-stream disturbances on a laminar flat plate boundary

layer. The upstream distortion was decomposed into its various Fourier

components. The analysis describes the resulting downstream evolution

of the flow, first through an unsteady boundary-layer region and then

into a region where spanwise ellipticity effects are important. The

flow in the latter region is governed by the unsteady boundary-region

equations, which were solved numerically subject to upstream and far-

field boundary conditions derived from strict asymptotic matching of

the solutions in the various regions shown in Figure I. The spanwise

ellipticity effects are surprisingly strong and very quickly influence

the growth of the disturbances. The linearized approximation allows

us to superpose the individual Fourier component solutions to the

unsteady boundary-region equations and thereby calculate the rms
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streamwise velocity fluctuations in the boundary layer due to a

broadband external turbulent flow. Results were obtained for both

pure isotropic turbulence and for axisymmetric turbulence with strong

low-frequency anisotropy.

Comparison of the theoretical calculations with recent experimental

data shows that the disturbances produced by the linear mechanism

described above closely resemble the behavior actually observed for

Klebanoff modes. The theoretical results for isotropic turbulence

predict the initial linear growth with boundary-layer thickness but,

due to the strong pressure coupling effects in the boundary-region

equations, the amplitudes do not reach the levels found in the

experiments. Calculations using a strongly anisotropic model for the

free-stream turbulence suggests that low-frequency anisotropic effects

could be a significant factor in explaining the discrepancy.

Bertolotti (1997) carried out an ad hoc analysis of the problem

considered in this paper by using the parabolic stability equations.

Results from calculations with a single, steady, free-stream mode were

compared with the data of Westin et al. (1994), and agreement was

obtained by selecting the modal amplitude to produce the best results.

Bertolotti (1997) also made comparisons wit]l recent, unpublished, data

of Kendall. Of particular interest is the comparison with filtered

rms data for various frequency bands. The computations qualitatively

predict the large amplification of the low-_requency components that
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was observed in the experiment, but generally underpredict the actual

amplitudes with the agreement being worse at large downstream

distances and frequencies. The calculations were again made with a

single (spanwise and transverse) free-stream mode of pre-selected

amplitude.

Our analysis differs from that of Bertolotti (1997) in a number of

important aspects. First, we have derived our governing equations and

boundary conditions in a rational way from the Navier-Stokes

equations. Second, we have made use of the major attraction of the

linear theory, namely, its superposition feature to combine the

individual Fourier component solutions to obtain results corresponding

to the actual broadband turbulent flow. Moreover, our comparisons

with experimental data use the reported free-stream turbulence levels

as the overall input into the linear theory.

As already mentioned, the analysis is restricted to what appears to be

the dominant generation and amplification mechanism of low-frequency

disturbances in the boundary layer, viz. the linear amplification of

crossflow-driven disturbances in the boundary layer on an infinitely

thin flat plate. There are numerous other effects present in the

experiments which might potentially contribute to the amplification of

the disturbances.
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Our calculations of u rms only include the u contribution. The _(0)

component makes an independent, and much smaller, contribution to the

rms velocity fluctuation (Gulyaev et al. 19139) for isotropic free-

stream turbulence. However, in the axisymmetric turbulence

approximation there are cross-product contributions to the rms

velocity due to the interaction between u s_d_(°) components which would

probably yield a larger contribution than that due to the self-

interaction of _(0).

Kendall (1991) and Watmuff (1997) found that changing the leading-edge

bluntness of their plates had very little effect on the amplitude or

spanwise spacing of the disturbances in the boundary layer. However,

stretching of vortex lines initially normal to the plate by a

relatively blunt leading edge produces a streamwise vorticity

(crossflow) which is then imposed on the boundary-layer flow

(Goldstein et al., 1992; Goldstein and Wundrow, 1997). This mechanism

leads to augmentation of the disturbance amplification relative to

that of an infinitely thin plate. It is worth noting that the

leading-edge bluntness effects were not investigated in the

experiments of Roach and Brierley (1992) and Westin et al. (1994).

As already noted, the governing equations show that nonlinear effects

become important when Ex = 0(i). Results from numerical calculations

of the steady three-dimensional, boundary-layer and boundary-region

equations in Goldstein et al. (1992), Goldstein and Leib (1993), and
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Goldstein and Wundrow (1997) show that the boundary layer responds

more or less linearly for some distance, up to _x of around 0.6 and

that nonlinear effects, when they become significant, enter very

rapidly. In the experiments of Roach and Brierley (1992) and Westin

et al (1994), _x ranges from about 0.2 at the initial measurement

station to about 3 at the most downstream measurement point where

comparisons with the linear theory are presented. We therefore expect

the linear theory to be capable of describing at least the initial

stage of Klebanoff-mode evolution. The appearance of turbulent spots

in the data of Westin et al. (1994), however, clearly shows that

nonlinearity eventually becomes important.

Additional theoretical and experimental work is required before a full

understanding of the Klebanoff-mode generation and growth mechanisms

is in hand. On the theoretical side, the additional effects discussed

above could each be analyzed separately, and then superposed when

linear theory can be used. However, it is probably more important to

account for nonlinear effects. A major difficulty with this is that

it is no longer possible to superpose free-stream modes in order to

simulate a homogeneous external turbulent flow. A full simulation of

the problem, including the free-stream turbulence, is impractical with

current computational capabilities, so that some type of modeling of

the free-stream turbulence would be needed. Unfortunately, this has

not been adequately developed, but perhaps the linear theory, together

with experimental data, could be of some use to guide in the selection

of an appropriate model.
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On the experimental side, our analysis suggests that important

information could be obtained from detailed measurements of the low-

frequency portion of the free-stream turbulence spectrum and, in

particular, the relative degree of anisotropy therein. In addition,

measurements of the transverse correlation function Rvt of the free-

stream turbulence would provide the input needed to compute the

boundary-layer u rms in our axisymmetric model. This would allow a

more definitive test of the present linear theory and might suggest

further lines of research to develop a fuller understanding of this

phenomena.

The exact role played by the Klebanoff mode in the laminar-turbulent

transition process remains unclear. They can reach very large

amplitudes in the boundary layer before transition occurs, whereas TS

waves provoke transition at much lower leve_s. Experiments by Boiko

et al. (1994) show that sufficiently high levels of free-stream

turbulence can produce significant transfer of energy between

frequencies within the unstable bands for T_!_waves. It is therefore

possible that the Klebanoff modes primarily influence transition by

modifying the base flow, which, among other things, causes a

broadening of the frequency band over which the TS waves can grow. A

stability analysis of such a base flow, i.e , the Blasius profile with

Klebanoff modes superposed, could shed additional light on this issue.

Wundrow and Goldstein (1994), Wundrow (19961, and Goldstein and

Wundrow (1995) have already made some progress along these lines.
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Another possibility is that large-amplitude Klebanoff modes may

generate turbulent spots directly. Finally, it is worth noting that

the Klebanoff modes exhibit a marked similarity to the sublayer

streaks in the turbulent boundary layer: a connection that definitely

merits further investigation.

Appendix A: Edge-Layer Solution for Asymptotic LUBL Equations

Equation (4.22) suggests that the appropriate transverse coordinate in

the edge layer is given by

(A-l)

where T0 is determined by

2IA = rl_e._O:2 , (A-2)

and _(x)_A is the edge-layer thickness. Then the mean velocity will

exhibit an order-one variation across the edge layer if we put

_0U0 =I (A-3)

Substituting these into the unsteady boundary-layer equations, (4.5)

and (4.10) show that

(A-4)

are determined by
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(A-5)

02_
(A-6)

OV,

i< +--_ +w-.=o (A-7)

subject to the boundary condition that

_ , ---_ 0 w--_--+ l as _ -_ oo (A-8)

and that _,e _ match onto (4.18) as _--_-oo with a similar condition for

ue- As suggested by Gulyaev et al. (1989), (A-7) can easily be solved

in terms of Hankel functions to obtain

ar -,)/2 H_,)(2.47 e -;112_, =---_le ) , (A-9'

which clearly satisfies the outer-edge boundary condition (A-8), while

the large argument expansion for HI ¢II shows that

We _ _ e-ixlSe-@14e -2_e-;'/z

(A-10)

which, in view of (A-I)-(A-4) and (4.18)-(4.20), will clearly match

onto (4.18) if we take
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co = A2(2_)4e-n- ÷i'_/8 , (A-I1)

where H®--!i_m_[H+I- -4_2 +en_].

Appendix B: Axisymmetric Turbulence

The general form of the energy spectrum tensor in axisymmetric

turbulence is (Batchelor, 1946, 1953; Chandrasekhar, 1950)

Ou = Ak_kj + B4,_i, + C6_. + Dk_6.i, + Ekj4 , , (B.I)

where A, B, C, D, and E are scalar functions of kl and k 2 =k_ +k_ +k_.

The number of arbitrary functions can be reduced by using the

conditions of incompressibility to show that the spectrum tensor can

be expressed in terms of two scalar functions

(B.2)

Defining,

O,(k,,k_)=_,, , (B.3)

and
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Ot(kl,kL)=¢])22 -1- (I)33 t (S.4)

(B.2) can be written as

where

k_. = k i - 6,, k I , ( B. 6 )

k 2 =k 2 +k_ 2, and

-4,8j, (B.7)

The functions _)i and _)t are related to the longitudinal and lateral

one-dimensional spectra, El(kl) and Et(kl), respectively by

E, (k,) = 2x; 4), (k,, k. )kidk ± ,
0

(B.8)

and

co

E, (k,) = 2=; (I) t (k,, k I )k I dk I
0

(B.9)
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